• 纷纷“结缘”世界杯 家电企业图什么 2019-06-13
  • 推动吉台两地合作发展再上新台阶 2019-05-29
  • 中青报:父亲的“卖牛钱”被打赏 该如何管住孩子的手 2019-05-29
  • 任建明解读中纪委五次全会亮点 展望新时期反腐制度建设 2019-05-28
  • 全国首套房贷款利率连续17个月上升 2019-05-25
  • 昌赣高铁假期加紧施工 2019-05-25
  • 美国再挑贸易战,中方强力回击,全球市场跌声一片 2019-05-24
  • 【学习时刻学思践悟十九大①】人民大学马亮:在新时代增强党的改革创新本领 2019-05-24
  • 我们的节日2018端午——华龙网 2019-05-22
  • 生产过剩之繁荣,浪费资源大不该。 2019-05-22
  • “相信中华民族伟大复兴的中国梦一定会实现” 2019-05-08
  • 卡赛首站启动 欧马可S3助力危化品运输 2019-05-04
  • 深秋烟雾偎婺源文章中国国家地理网 2019-05-04
  • 公安部端午节假期首日将现出行高峰 上午达峰值——人民政协网 2019-05-01
  • “00后”考生和球迷搅热西安暑期出境游市场 2019-05-01
  • 当前位置 > CPDA数据分析师 > “数”业专攻 > 数据科学中应该学习哪些语言?

    天津快乐十分前三组走势图:数据科学中应该学习哪些语言?

    浙江快乐彩和值走势图 www.pn-vs.com 来源:数据分析师 CPDA | 时间:2017-09-07 | 作者:admin

    原始的数据科学是劳动密集型活动,但当你会用适合的语言进行工作时,数据科学应该是非常智能有趣的工作,会让你得到一些不容易看到的结论。


    数据科学中应该学习哪些语言

     

    一般来说,数据科学中常常会涉及大量数据的处理,此时优化代码的性能非常重要。考虑到这些基本原则,来看看哪些语言是数据科学中应该掌握的:

     R语言

    R

    R 发布于 1995 年,是 S 语言的一个分支,开源。目前由 R Foundation for Statistical Computing 提供技术支持。

    优点:

    免费、开源,各种功能和函数琳琅满目

    专门为统计和数据分析开发的语言,即使基础安装也包含全面的统计功能和方法

    数据可视化

    缺点:

    性能,R 作为解释型语言,运行效率并不高

    R 在统计学的表现很出色,但并不适用于通用编程

    Package 的可靠性问题

    小结: R 语言在统计和数据可视化方面非常强大,并且开源让它聚集了一帮活跃的贡献者,不过由于开发者良莠不齐,导致 Package 的可靠性方面会有点问题

     

    Python

    Python

    Guido van Rossum 在 1991 年推出 Python,开源。Python 广泛用于数据科学领域,目前主要的版本是 3.6 和 2.7 。

    优点:

    Python 是一门主流编程语言,有着广泛的在线支持

    入门友好,易于学习

    有诸如 pandas , scikit-learn 和 Tensorflow 这样优秀的 package

    缺点:

    Python 作为动态语言,比 Java 还慢,而且容易出现类型错误

    对于特定的统计或数据分析,R 的封装会比 Python 更轻松;而在通用性方面,也有比 Python 更好的替代方案

    小结: Python 是数据科学中很好的选择,而且,Google 的 TensorFlow 使得机器学习框架都偏向于Python

     

    SQL

    SQL

    SQL 是结构化查询语言,用于存取数据以及查询、更新和管理 关系数据库系统

    优点:

    在查询、更新和管理关系数据库方面非常有效

    易读。类似这样的语句基本不会有歧义:SELECT name FROM users WHERE age > 18

    SQLAlchemy 等模块使 SQL 与其他语言的集成变得简单明了

    缺点:

    分析功能相当有限

    SQL有很多不同的实现,如 PostgreSQL , SQLite , MariaDB 。他们都是不同的,操作起来有点麻烦。

    小结: SQL 作为数据处理语言比作为高级分析工具更有用

     

    Java

    Java

    Java 具有简单性、面向对象、 分布式 、 健壮性 、 安全性 、平台独立与可移植性、 多线程 、动态性等特点,目前由 Oracle Corporation 支持。

    优点:

    应用广泛,许多系统和应用都用 Java 写后端,能够将数据科学方法直接继承到现有的代码库

    健壮。对于重要任务的大数据应用,这点很宝贵

    适合编写高效的 ETL 生产代码和计算密集型机器学习算法

    缺点:

    对于专用的统计分析,Java 的冗长度不适合作为首选。不过动态类型的脚本语言(如 R 和 Python)可以提高生产率

    与 R 这样特定领域的语言相比,Java 中没有大量可用于高级统计方法的库

    小结: Java 其实不推荐作为数据科学语言的首选,尽管它能将数据科学代码无缝接入现有代码库,而且性能和安全性也是它的优势。但是作为开发者,使用 Java 就意味着没有其他语言特定的包可用。

     

    Scala

    Scala

    Scala 是一门多范式的编程语言,类似 Java,由 Martin Odersky 开发并于 2004 年发布。

    优点:

    Scala + Spark = 高性能集群计算。它是大数据领域的杀手级应用框架

    多范式

    Scala 被编译为 Java 字节码并在 JVM 上运行,这使 Scala 成为非常强大的通用语言,同时也非常适合数据科学

    缺点:

    Scala 并不太适合初学者

    语法和类型都比较复杂,这对于 Python 开发者其实是个比较陡峭的学习曲线

    小结: 对于集群处理大数据的环境,Scala + Spark 是一个很棒的解决方案。但对于少量数据而言,其他语言或许效率更高

     

    Julia

    Julia

    Julia 是一款刚出现没几年的 JIT 科学计算语言, 为高性能科学计算而生。

    优点:

    JIT(just-in-time)语言,性能良好,还提供像 Python 等解释语言的脚本功能和动态类型

    为数值分析而生,但也同样能进行通用编程

    可读性好,而且 Julia 文档的中文翻译优秀(因为核心组有个中国人哈哈哈)

    缺点:

    作为一种新语言,很难说已经可以成熟到大规模使用

    有限的包

    小结: 潜力无限,但就目前而言,还不如 R 和 Python 一样成熟稳定

     

    MATLAB

    MATLAB

    MATLAB 是 MathWorks 公司出品的商业 数学软件 ,用于算法开发、数据可视化、数据分析以及 数值计算 的高级技术计算语言和交互式环境,在数学类科技应用软件中在数值计算方面首屈一指。

    优点:

    专为数值计算而设计,非常适合具有复杂数学计算的定量应用,如信号处理、傅里叶变换、图像处理等

    数据可视化,MATLAB 内置了绘图功能

    作为数学本科课程的一部分,它在物理、工程、应用数学等领域有着广泛应用

    缺点:

    还挺贵的( 获取 MATLAB 及工具箱报价 )

    不适用于通用编程

    小结: MATLAB 最适合数据密集型应用,毕竟它就是为此而生的。

     

    总结

    本文只是个快速指南,来帮助选择哪种语言适合做数据科学。当然,除了上述介绍的语言外,C++、JavaScript、Perl 还有Ruby 也可以解决一些数据问题,其中的关键在于你的使用需求,以及个人的喜欢等。

     

  • 纷纷“结缘”世界杯 家电企业图什么 2019-06-13
  • 推动吉台两地合作发展再上新台阶 2019-05-29
  • 中青报:父亲的“卖牛钱”被打赏 该如何管住孩子的手 2019-05-29
  • 任建明解读中纪委五次全会亮点 展望新时期反腐制度建设 2019-05-28
  • 全国首套房贷款利率连续17个月上升 2019-05-25
  • 昌赣高铁假期加紧施工 2019-05-25
  • 美国再挑贸易战,中方强力回击,全球市场跌声一片 2019-05-24
  • 【学习时刻学思践悟十九大①】人民大学马亮:在新时代增强党的改革创新本领 2019-05-24
  • 我们的节日2018端午——华龙网 2019-05-22
  • 生产过剩之繁荣,浪费资源大不该。 2019-05-22
  • “相信中华民族伟大复兴的中国梦一定会实现” 2019-05-08
  • 卡赛首站启动 欧马可S3助力危化品运输 2019-05-04
  • 深秋烟雾偎婺源文章中国国家地理网 2019-05-04
  • 公安部端午节假期首日将现出行高峰 上午达峰值——人民政协网 2019-05-01
  • “00后”考生和球迷搅热西安暑期出境游市场 2019-05-01