• 坚守一条红线 维护生态安全(在习近平新时代中国特色社会主义思想指引下——新时代新作为新篇章) 2019-11-12
  • 《辉煌中国》第五集《共享小康》 2019-11-12
  • 这事咋办No.2丨申请西安保障性住房必看 花生让你有房住 2019-11-11
  • 预热世界杯 玩法各异!3张竞彩红单了解一下 2019-10-18
  • 崇拜不劳而获是腐败的根源之一,正气不足是腐败的第二个根源,沉迷于初级趣味易滋生腐败,提高素质力争不想腐,以医者之心防治腐败。 2019-10-09
  • 人民日报评论员随笔:让文化热情涵养更多经典 2019-10-09
  • 国产手机跟进“刘海屏”,凸显苹果在智能手机市场的影响力 2019-10-05
  • 世界杯倒计时:球迷街头狂欢为自己的国家打Call 2019-10-02
  • 紫光阁中共中央国家机关工作委员会 2019-09-24
  • 洪崖洞客流激增 渝中开通2条应急通道12辆公交车驰援 2019-09-24
  • 中央环保督察“回头看”10省区问责630人 2019-09-19
  • 天津举办改善营商环境专题讲座 2019-09-19
  • 日本核能行业誓言日本将在今年内重新启用核电 2019-09-03
  • 中国保险行业协会发布汽车后市场配件合车标准 2019-09-02
  • 晋中市通报五起违反中央八项规定精神问题 2019-08-30
  • 当前位置 > CPDA数据分析师 > “数”业专攻 > 做好异常数据分析,看这篇就够了

    天津福彩快乐十分开奖走势图:做好异常数据分析,看这篇就够了

    浙江快乐彩和值走势图 www.pn-vs.com 来源:数据分析师 CPDA | 时间:2019-09-18 | 作者:admin

    做好异常数据分析,看这篇就够了 - 做好异常数据分析,看这篇就够了

     

    对于一枚数据分析师而言,监控日常指标数据是必不可少的工作之一,数据异常分析是数据分析工作中最常见且重要的分析主题。一般来说,这些数据都有固定的波动周期,每个周期内的数据变化应该是趋于稳定的,如果某天某周某月的数据不再符合预期的稳定变化,也就是我们所说的数据异常。

     

    这种情况下,我们需要去深挖数据异常产生的原因。通过一次次的异常数据分析来明确造成数据波动的原因,建立日常的的运营工作和数据波动之间的相关性以及贡献程度的概念,从而找到促进数据增长的途径,改变数据结果。

     

    关于异常数据分析,

     

    其实总结起来就是三个方面:

     

    第一,界定问题

    经常我们收到的数据分析需求可能是“XXX,转化率最近在下降,询盘量有点上升。分析下什么情况”(敲黑板,数据分析面试的时候高频率问题之一!!!),这种需求其实并没有把问题界定描述清楚。所以作为数据分析师来说,首先要做的事情便是对数据波动进行界定,如果问题没有界定清楚,后续的数据分析也就失去了价值。

    接到这样的需求,需要解决以下疑问:

     

    (1)判断数据波动是否为异常(对比前后一段时间内的变化情况)

     

    (2)确定异常的范围(异常发生的维度,主要从时间维度看)

     

    (3)波动的程度(理论上有【3个西格玛】,实际中一般通过观察趋势图)

     

    (4)是否需要深入分析

     

    注意:如果数据有明显的周期性和季节性,需去除相关因素之后再利用以上办法计算阈值。

     

    第二、猜测原因

    当然,其实一般都是新手数据分析来处理分析的,你可能会觉得两眼一抹黑不知如何下手,ok,一般都是核心指标或者基础指标异常监测和分析,所以想要进一步分析,只有一个字,拆!!!一般有两种拆的思路。

     

    第1种,根据指标计算逻辑来拆。

     

    做好异常数据分析,看这篇就够了1 - 做好异常数据分析,看这篇就够了

     

    第2种,根据相关维度来拆。

     

    做好异常数据分析,看这篇就够了2 - 做好异常数据分析,看这篇就够了

     

    第3种,从产品、运营、技术以及用户四个角度来考虑原因。下面有一个简单的思维导图,可供参考。

     

    做好异常数据分析,看这篇就够了3 - 做好异常数据分析,看这篇就够了

     

    关于第二步,这个主要根据每个人对业务的理解水平,要尽可能做到发散发散再发散。。。

     

     

    第三,找数据来支撑你的假设

     

    这一点的不二法宝还是拆,下面介绍一些常见的细分维度及其案例。

    分步:假设某产品的转化率数据出现降低的情况,而这个转化率是多步漏斗转化的最终转化,我们可以细分每一步的转化情况,查清是否因为某一步出了问题。比如微信支付服务器的故障会造成下单到支付的转化降低从而造成转化率降低,列表加载速度增加造成列表到详情转化率降低影响整体转化等等。

    分平台/版本:假设某产品列表页到详情页的转化提升,我们猜测是iOS新版本中优化列表布局方式,我们需要分iOS和Android以及分iOS新版老版对比这个转化数据来证明我们的猜测。

    分区域/城市:假设某年8月31日某OTA的交易额呈现大幅增长,我们猜测是因为大学生开学造成酒店需求增加,这时我们可以选取部分高校较多的城市如北京、武汉、西安等城市的数据来对比其他城市来侧面验证我们的猜测。

    分时间:假设某日某产品转化率数据下降,我们猜测是10:00-11:00支付服务器故障造成的,那我们只需要分时间段和上一个波动周期同期的数据对比,如果当日这个时间段转化率确实下降很大,就可以证明我们的猜想。

    分用户群体:假设某App新版上线之后新版转化率低于旧版,经过用户分析发现新版新用户比例较大,我们猜测新用户转化率会比老用户转化率低,这个时候我们只需要看一下新老客户的转化率区别就能知道我们是否蒙对了。

    分场景(本/异地):假设某App在某假期内转化率降低,已知异地用户转化率低于本地用户转化率,猜测假期转化率降低是因为异地用户较活跃造成的,这个时候,我们只要需要去看看本异地用户占比的变化就可以验证猜测了。

    分类目:假设某类目转化率在某段时间内明显提升,而这个时间段恰好是竞对较少补贴促销活动的时间,我们猜测是竞对促销活动终止对产品转化率造成了正面影响,如果我们查看数据证实那些被竞对取消促销的Item转化率提升明显,那说明我们的猜测是对的。

    可以细分分析的维度实在太多了,真的没办法穷举,但是我们需要记住这种分析方式,当猜测是某种原因造成数据异常时,只要找到该原因所代表的细分对立面做对比,就可以证明或证伪我们的猜测。

     

     

    第四,闭环

     

    数据分析的终极目的是对业务优化产生价值和赋能,由此,分析结论之后一定要提出切实可执行的方案,实现数据分析的闭环,即要落地到业务和产品上的具体建议,确保方案可执行,效果可评估。

    分析报告完成之后,一定要多与业务部门进行沟通,收集反馈,听取他们需要的是什么,一起商讨解决方案。作为分析师也要不断反馈自己如何改进才能更有效的与业务结合。

  • 坚守一条红线 维护生态安全(在习近平新时代中国特色社会主义思想指引下——新时代新作为新篇章) 2019-11-12
  • 《辉煌中国》第五集《共享小康》 2019-11-12
  • 这事咋办No.2丨申请西安保障性住房必看 花生让你有房住 2019-11-11
  • 预热世界杯 玩法各异!3张竞彩红单了解一下 2019-10-18
  • 崇拜不劳而获是腐败的根源之一,正气不足是腐败的第二个根源,沉迷于初级趣味易滋生腐败,提高素质力争不想腐,以医者之心防治腐败。 2019-10-09
  • 人民日报评论员随笔:让文化热情涵养更多经典 2019-10-09
  • 国产手机跟进“刘海屏”,凸显苹果在智能手机市场的影响力 2019-10-05
  • 世界杯倒计时:球迷街头狂欢为自己的国家打Call 2019-10-02
  • 紫光阁中共中央国家机关工作委员会 2019-09-24
  • 洪崖洞客流激增 渝中开通2条应急通道12辆公交车驰援 2019-09-24
  • 中央环保督察“回头看”10省区问责630人 2019-09-19
  • 天津举办改善营商环境专题讲座 2019-09-19
  • 日本核能行业誓言日本将在今年内重新启用核电 2019-09-03
  • 中国保险行业协会发布汽车后市场配件合车标准 2019-09-02
  • 晋中市通报五起违反中央八项规定精神问题 2019-08-30
  • 双色球摆球顺序图 十一吉林十一选五开奖 爱养成2赌场在 广西快乐10分复试玩法 秒速时时彩哪里开奖的 河北时时彩现场开奖结果查询 481稳赚不赔玩法 20193d走势图带连线 山西快乐十分软件 2019年六合图库马经300 任九14万奖金 福建快三走势图和值 河北快三豹子遗漏 淘宝经营技巧 棋牌电游赌场