• 坚守一条红线 维护生态安全(在习近平新时代中国特色社会主义思想指引下——新时代新作为新篇章) 2019-11-12
  • 《辉煌中国》第五集《共享小康》 2019-11-12
  • 这事咋办No.2丨申请西安保障性住房必看 花生让你有房住 2019-11-11
  • 预热世界杯 玩法各异!3张竞彩红单了解一下 2019-10-18
  • 崇拜不劳而获是腐败的根源之一,正气不足是腐败的第二个根源,沉迷于初级趣味易滋生腐败,提高素质力争不想腐,以医者之心防治腐败。 2019-10-09
  • 人民日报评论员随笔:让文化热情涵养更多经典 2019-10-09
  • 国产手机跟进“刘海屏”,凸显苹果在智能手机市场的影响力 2019-10-05
  • 世界杯倒计时:球迷街头狂欢为自己的国家打Call 2019-10-02
  • 紫光阁中共中央国家机关工作委员会 2019-09-24
  • 洪崖洞客流激增 渝中开通2条应急通道12辆公交车驰援 2019-09-24
  • 中央环保督察“回头看”10省区问责630人 2019-09-19
  • 天津举办改善营商环境专题讲座 2019-09-19
  • 日本核能行业誓言日本将在今年内重新启用核电 2019-09-03
  • 中国保险行业协会发布汽车后市场配件合车标准 2019-09-02
  • 晋中市通报五起违反中央八项规定精神问题 2019-08-30
  • 当前位置 > CPDA数据分析师 > “数”业专攻 > 数据挖掘与机器学习:有什么区别?

    天津快乐十分前二和值走势图:数据挖掘与机器学习:有什么区别?

    浙江快乐彩和值走势图 www.pn-vs.com 来源:数据分析师 CPDA | 时间:2019-08-20 | 作者:admin

    BigData 1 - 数据挖掘与机器学习:有什么区别?

     

    我们快速增长的数字世界已经普及了,产生大量的新术语和短语,以至于我们很容易不知所措或迷失方向。

     

    具体来说,这就是“数据挖掘”和“机器学习”所面临的问题。由于一些共同的特征,这两个词之间的界限有时会变得模糊。为了使事情更加清晰,我们将探讨数据挖掘和机器学习之间的显著区别。

     

    什么是数据挖掘?

    数据挖掘被认为是从大量数据中提取有用信息的过程。它用于在数据中发现新的、准确的和有用的模式,为需要它的组织或个人寻找意义和相关信息。它是人类使用的工具。

     

    机器学习是什么?

    另一方面,机器学习是发现算法的过程,这些算法得益于从数据中获得的经验。这是一种设计、研究和开发算法的方法,它允许机器在没有人类干预的情况下学习。它是一种让机器变得更智能的工具,消除了人为因素(但不是消除人类自身;那将是错误的)。

     

    他们有什么共同点?

    数据挖掘和机器学习都属于数据科学的范畴,这是有道理的,因为它们都使用数据。这两个过程都用于解决复杂的问题,因此,许多人(错误地)将这两个术语互换使用。考虑到机器学习有时被用作进行有用数据挖掘的一种手段,这并不奇怪。虽然从数据挖掘中收集的数据可以用来教机器,但是这两个概念之间的界限变得有些模糊。

     

    此外,这两个过程使用相同的关键算法来发现数据模式。

     

    bigdata 10 - 数据挖掘与机器学习:有什么区别?

     

    他们有什么不同?

    所以我们看到他们的相似之处很少,但是由于数据的重叠,这两个术语仍然很容易混淆。另一方面,两者之间有相当多的差异。因此,为了清晰和组织,我们将给出每个项目的项目符号。

     

    让我们来挖掘一下数据挖掘和机器学习之间的一些区别:

     

    时间

    首先,数据挖掘比机器学习早20年,后者最初称为数据库中的知识发现(KDD)。在某些领域,数据挖掘仍然称为KDD。机器学习首次出现在棋盘游戏程序中。数据挖掘从20世纪30年代就开始了;机器学习出现在20世纪50年代。

     

    目的

    数据挖掘是为了从大量数据中提取规则,而机器学习则是教计算机如何学习和理解给定的参数。或者换句话说,数据挖掘只是一种研究方法,根据收集的数据总量来确定特定的结果。另一方面,我们有机器学习,它训练一个系统去执行复杂的任务,并利用收集到的数据和经验变得更聪明。

     

    使用

    数据挖掘依赖于大量的数据存储(例如,大数据),而这些数据反过来又被用来为企业和其他组织做出预测。另一方面,机器学习使用的是算法,而不是原始数据。

     

    因素

    这里有一个相当显著的区别。数据挖掘依赖于人为干预,最终是为人们所使用而创建的。而机器学习存在的全部原因是它可以自学,而不依赖于人类的影响或行动。如果没有一个活生生的人使用它并与之交互,数据挖掘就无法正常工作。另一方面,人类与机器学习的接触,很大程度上仅限于建立初始算法。然后顺其自然,就像“设置好,然后忘记”的过程。人们照看数据挖掘;这些系统通过机器学习来照顾自己。

     

    bigstock Business Idea Concept 44475463 - 数据挖掘与机器学习:有什么区别?

     

    联系

    此外,数据挖掘是一个包含两个元素的过程:数据库和机器学习。前者提供数据管理技术,而后者提供数据分析技术。因此,虽然数据挖掘需要机器学习,但机器学习并不一定需要数据挖掘。不过,在某些情况下,来自数据挖掘的信息用于查看关系之间的连接。毕竟,除非你有至少两条信息可以互相比较,否则很难进行比较!因此,通过数据挖掘收集和处理的信息可以用来帮助机器学习,但这不是必需的。更多地把它看作是一种方便。

     

    能力

    这里有一个简单的例子:数据挖掘无法学习或适应,而这正是机器学习的全部意义所在。数据挖掘遵循预先设定的规则,是静态的,而机器学习则根据合适的情况调整算法。数据挖掘只有在用户输入参数时才算智能;机器学习意味着这些计算机变得越来越智能。

     

    使用

    在实用性方面,每一种工艺都有其独特之处。数据挖掘应用于零售业,以了解客户的购买习惯,从而帮助企业制定更成功的销售策略。社交媒体是数据挖掘的沃土,因为从用户档案、查询、关键字和共享中收集信息可以放在一起。它将帮助广告商组织相关的促销活动。金融界使用数据挖掘来研究潜在的投资机会,甚至是初创企业成功的可能性。收集这些信息有助于投资者决定是否要投资新项目。如果数据挖掘早在90年代中期就得到完善,它完全可以防止90年代末优秀的互联网初创企业倒闭。

     

    blog - 数据挖掘与机器学习:有什么区别?

     

    这说明了什么呢?

    每天,我们的世界都有越来越多的人求助于数字解决方案来处理任务和解决问题。这是一个足够大的数字世界,有足够的空间让数据挖掘和机器学习蓬勃发展。大数据的持续主导地位意味着总有数据挖掘的需求。对智能机器的持续驱动和需求将确保机器学习仍然是一项非常受欢迎的技能。

     

    你可能会想,哪个最有潜力?没有明确的答案,但我们可以做出一个体面的、有根据的猜测。人们对人工智能和智能设备越来越感兴趣,移动设备的使用也在不断增加,这些都是好的迹象。在这两个过程中,机器学习可能提供了最好的机会。

     

     

  • 坚守一条红线 维护生态安全(在习近平新时代中国特色社会主义思想指引下——新时代新作为新篇章) 2019-11-12
  • 《辉煌中国》第五集《共享小康》 2019-11-12
  • 这事咋办No.2丨申请西安保障性住房必看 花生让你有房住 2019-11-11
  • 预热世界杯 玩法各异!3张竞彩红单了解一下 2019-10-18
  • 崇拜不劳而获是腐败的根源之一,正气不足是腐败的第二个根源,沉迷于初级趣味易滋生腐败,提高素质力争不想腐,以医者之心防治腐败。 2019-10-09
  • 人民日报评论员随笔:让文化热情涵养更多经典 2019-10-09
  • 国产手机跟进“刘海屏”,凸显苹果在智能手机市场的影响力 2019-10-05
  • 世界杯倒计时:球迷街头狂欢为自己的国家打Call 2019-10-02
  • 紫光阁中共中央国家机关工作委员会 2019-09-24
  • 洪崖洞客流激增 渝中开通2条应急通道12辆公交车驰援 2019-09-24
  • 中央环保督察“回头看”10省区问责630人 2019-09-19
  • 天津举办改善营商环境专题讲座 2019-09-19
  • 日本核能行业誓言日本将在今年内重新启用核电 2019-09-03
  • 中国保险行业协会发布汽车后市场配件合车标准 2019-09-02
  • 晋中市通报五起违反中央八项规定精神问题 2019-08-30
  • 河内五分彩的常用规律 广西快3和值推荐号码 江西多乐彩11选5前3直选图 一分钟一期的彩票骗局 吉林福彩3d开奖号码 二八杠打多张 足球射门怎么发力 老虎机后面4个键这么调 利赢彩票 重庆时时彩定位胆技巧论坛 九张牌规则 扑克牌手法 老时时彩官方网站 京东彩票是真的挣钱吗 赌鱼虾蟹的技巧